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The authors consider the influence of nonuniformity and asymmetry of the heat 
supply and removal in the evaporation and condensation zones of heat pipes on 
the characteristics of the vapor flow. 

In optimizing the scale and weight characteristics of heat pipes one meets the 
problems of limiting decrease of the cross section of the vapor channel, which leads un- 
avoidably to a sharp increase of the pressure loss in the vapor flow. The influence of the 
vapor flow characteristics on the operating and limiting characteristics of low-temperature 
heat pipes here can be appreciable, and sometimes a govering factor. Thus, we need reliable 
theoretical relations to determine the vapor flow characteristics in heat pipes. This 
matter is complicated appreciably by the fact that in most cases in practice the heat flux 
is nonuniform along the evaporation and condensation zones, and for flat-plate heat pipes 
it is also unsymmetrical with respect to the longitudinal axis. The influence of nonuniformity 
of the heat flux in the evaporation and condensation zones of cylindrical heat pipes on 
their operation and limiting characteristics was investigated in detail in [i]. 

In this paper we consider the influence of nonuniformity and asymmetry of the heat supply 
and removal in the evaporation and condensation zones on the vapor flow characteristics in flat- 
plate heat pipes. 

We consider the case of heat supply or removal according to a power law. On the one 
side we have 

and on the other 
~I ~n (1 )  �9 - - "  q l  

qII x,~ == q2 , ( 2 )  

where x is the dimensionless axial coordinate. For the sake of being definite we assume that 

0 ! q 2  ! q l .  

The case q2 = 0 corresponds to a one-sided heat supply or heat removal, and the case 
q= = ql is symmetric. For n = 0 the heat flux is uniform along the zones considered. Figure 
i shows the coordinate system for the problem examined. 

We write the system of equations describing the flow of incompressible vapor with 
constant physical properties 

1 OP uau Ou (8~u. .  a~u) 
p ax ox oy ~ o :  + T  ' (3)  

. . . .  U - - V  . . . . .  + ' ~ ,  - ( 4 )  
' p a y  ax ay \ ax~ o :  ] ' 
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Y ---- O, v == ::k V ~ n ;  U - -  O; ( 6 )  

V ---- 6, v = -T V.~x~; u = O; ( 7 )  

x = O ,  x = L ;  u ~ v = O .  ( 8 )  

with the boundary conditions 

Moscow Energy Instiute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 
pp. 222-226, February, 1986. Original article submitted December i0, 1984. 

50, No. , 

158 0022-0841/86/5002-0158512.50 �9 1986 Plenum Publishing Corporation 



Here and below the upper sign of the chosen coordinate system refers to the evaporation 
zone, and the lower sign refers to the condensation zone. 

We arrive at the dimensionless variables: 

x = x/L e for the evaporator (9)  

= 1 - - x / L  e for the condenser (i0) 

~=y/8 

We introduce a certain velocity function f in the form 

v _ . _ i ~ =  _ _ . 6 v  (11) 
f = - + - v ~ "  ~ R e , ~  ~ ' 

where 

• v~6 
Re,~ = - -  ( 12 ) 

v 
Here for the evaporator Re n > 0, and for the condenser Re n < 0 the velocity vl is deter- 
mined from the expression 

ql 
~)1 = ' (13) pr 

To solve the system of equations (3)-(5) we use the method of perturbation theory [2]. 
As the perturbing parameter here it is convenient to use the Reynolds number, expressed in 
terms of the normal velocity of the vapor, Eq. (12). 

We consider the case IRenl << i. We expand the function f in a series in the perturbing 
parameter: 

m--m 

f = fo -~ fl Re,~ ~i + . - -  -}- f ~  Re. x . ( 1 4 )  

It is_assumed that the function fi, where i = 0, i, 2, ... , is independent of the axial 
coordinate_x. To calculate the dependence of the function f on the axial coordinate we also 
introduce x in the series. 

We substitute Eqs. (9), (i0), (ll),and (14) into Eq. (3) and (4), take account of Eq. 
(5), differentiate Eq. (3) with respect to y and Eq. (4) with respect to x, equate the 
right sides, evaluate the terms of the differential equation obtained analogously as in 
[I], gather terms with the same power of Ren, equate them to zero, and obtain the following 
system of ordinary differential equations of fourth order for the functions fi: 

f~" = 0; ( 1 5 )  

f l y _  2n @ 1 ( for; , ,  f'o fo); (16) 
n + l  

fi2v _ 3n + I ( fo f]" - -  f~" f l)  -~ 3n 4-, 1 ([x[o"--f ';  fo); (17) 
2 n + l  n +  1 

m - - I  

fU = ~,  A, (hf~-~_~-- f; f;~_l_O, ( 18 ) 

where 
A i -  (m-k- 1 ) n +  1 

-- ; m = 1 , 2 , 3  . . . .  
( m - - O n  + 1 

with the boundary conditions 

n = o  f o = l , h + ~ = o , f ; = o ;  (19) 

"q= 1 f o = ~ V d V l ,  [~+1=0, fl = 0, i = 0 ,  l, 2, 3 . . . .  (20) 

The e q u a t i o n  o b t a i n e d ,  Eq. (15) ,  f o r  the  u n p e r t u r b e d  f low ( z e r o  o r d e r  a p p r o x i m a t i o n )  
c o r r e s p o n d s  t o  f low in  a s m o o t h - w a l l e d  p i p e .  The f u n c t i o n s  f l  ( f i r s t  a p p r o x i m a t i o n ) ,  f2 
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Fig. I. The coordinate system. 

Fig. 2~ Influence of the heat-flux distribution on the s 
loss AP = AP/APn= 0 in the vapor channel for Re n = 0.2 andx = I: i) 
evaporator; 2) condenser. 

(second approximation), etc. account for the influence of the normal velocity component 
of the vapor at the phase transition surface. The coefficients A i account for the in- 
fluence nonuniformity along the normal velocity component of the vapor at the phase transi- 
tion surface. Integration of Eqs. (15), (16), (17), and (18) and implementation of the 
boundary conditions (19) and (20) do not present any particular complexity. 

According to an estimate of accuracy in [2], it was shown in [I] that to sufficient 
accuracy one can restrict the solution to the first approximation for the function f. Even 
with Re n = 1 the error in determining the function f does not exceed one percent. 

Thus, we have: 

[~-1--3N~I~-~2NTI3"-~- 2n+---~tNRe~n[( l n +  1 2 358"N) ~1~ --:. (21) 

--  1 - -  27 N ~ 1 3 + ~ n -  10 ~ N~16- N~  
7O 35 ' 

where N = 1 + v2/v z. 

Using Eq. (21) we obtain an expression to determine the pressure drop in the evaporation 
and condensation zones 

A P = - - p ~  5~ ] (n -t-1) (n -}- 2) 35 2 n + 2  3 n + 2  'Ke~x 35 

where Re n > 0 for the evaporation zone and Re n < 0 for the condensation zone. 

By analyzing Eq. (22) we see that for one-sided heat supply or removal (q2 = 0, N = i) 
with ql = const the pressure losses in the evaporation and condensation zones decrease 
appreciably. This can be explained by the decrease of mass flow through the zones. But if, 
while decreasing q2 we proportionally increase qz, i.e., we keep qz + q2 = const 
then the pressure losses in the vapor flow of the evaporation and condensation zones are 
practically unchanged. 

As can be seen from Eq. (22) the pressure losses in the vapor flow (this holds without 
complication also for a liquid, using existing relations to determine the pressure gradients) 
are appreciably affected by the heat load distribution along the evaporation and condensation 
zones. 

When the heat flux is concentrated into the transport zone the pressure losses decrease 
sharply (Fig. 2). The reason is that the main mass of heat transfer agent traverses less 
distance along the zones. When the heat flux is concentrated at the ends of the heat pipe 
one would expect the reverse to be true. The shape of the surface of the evaporation and 
condensation zones appreciably influences the shear stress at the phase interphase. For 
example, for flat-plate pipes in the evaporation zones with increase of heat supply the 
shear stresses become less than for flow in channels with impermeable walls, but become 
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Fig. 3. Influence of evaporation and con- 
densation on the shear stresses at the vapor- 
liquid interface: i) evaporator; 2) condenser; 
a) cylindrical, b) flat-plate channel. 

greater in the condensation zone (Fig. 3). In cylindrical heat pipes, as shown by the results 
of the calculations of [i], the opposite picture is observed. 

A comparison with the experimental results of [3, 4] shows that the solutions obtained 
agree well with experiment in the range IRenl < 1.2. For Re n = 3.72 the divergence of the 
results calculated using Eq. (22) from the experimental data of [4], which investigated a 
flat-plate heat pipe with one-sided heat supply and removal, reaches 27%. 

NOTATION 

P, density, kg/m3; ~, kinetmatic viscosity, m2/sec; 6, distance between the phase inter- 
face surfaces, m; L, length, m; v, u, normal and_axial comonents of the vapor velocity, m/sec; 
P, pressure, N/m2; q, specific heat flux, W/m2; T w = %/Ti. w. Subscripts: e, evaporation; c, 
condensation; n, normal to the surface; i.w, impermeable wall. 
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